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EXECUTIVE SUMMARY

PROBLEM

A method is needed for finding the variability of the electric field strength in the
earth-ionosphere waveguide at very low frequencies due to variations in the electron
density profile.

RESULTS

A method is developed for finding the standard deviation of the field strength in the
earth-ionosphere waveguide. This method uses derivatives of the waveguide eigenangles
with respect to height and slope variations in the electron density profile. The calculated
results are in reasonable agreement with available data.
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INTRODUCTION

Predictions of the field strengths of signals from very low frequency (VLF) and low
frequency (LF) transmitters are of considerable interest to the Navy. For example, the
choice of frequency diversity depends on the locations of nulls in the signal level. The
predictions of field strengths are based on mode theory for the earth-ionosphere

waveguide [Budden, 1961; Pappert, Gossard, and Rothmuller, 1967; Morfitt and

Shellman, 1976]. Variations occur in the electron density profile, however, and a method
of routinely calculating the standard deviation of the signal strength as a function of

distance, due to these variations, has not been available. Such a method is needed for

more realistic assessments of signal coverage.

In this report an exponential form of the electron density is assumed. The overall
height is given by h' and the slope by P such that

N = 1.43 x 107 exp[l(h-h') - 0.15h]

where height is in kilometers and electron density, N, is in electrons per cubic centimeter.
The parameters h' and fP are assumed to have Gaussian distributions with standard
deviations oh and a# with respect to time variations in the ionosphere.

Ferguson, Morfitt, and Hansen [19851 used measurements of signal levels of transmis-
sions from NGR in Greece at 59 kHz to deduce h' and fl, their standard deviations, a/

and a#, and the correlation between them. The measurements were made at two locations
on either side of a modal interference null at 900 km and 1300 km west of the
transmitter. The object of this present work is to derive an efficient way of calculating the
standard deviation of the field strength as a function of distance for any given values of

crh and oru. It is assumed that there is no correlation between h' and fP. This latter
assumption is not fundamental to the formulation, however, which could be expanded to
include correlation.

The approach taken in this present work is to find the rate of change of the sines of
the waveguide eigenangles and from that information to find the expectation values of the
field strength and the standard deviation. The excitation factors are assumed not to vary.

THEORY

The expectation of the variance is

<(E- <E>) (E* - <E*>)>

= <EE*> - <E<E*>> -<<E>E*> + <E><E*>

= <EE*> - <E><E*>



where the electric field, E, as a function of h' and fl, is taken to be

E - I ,, exp {- ik[S, + (aS.,/ah')Ah' + (aS,/afi)A,68x)

where 1, is the excitation factor, S, is the sine of the earth-ionosphere eigenangle, and k
is the wave number. The variation with respect to h' and fP is taken to be independent.

In general

< fw) >= f ftw) p1(w) dw

where the integral is taken from -c to cc and

p1 (w) = [1/o(2j) )1/21 exp (-w 2/2o)

For a sum

< a. (w) > f J a. (w) ]p,(w) dw

I f an(w)pI (w)dw < zan(W) >

For a. of the form

a. = exp (- ao - a1w)

the expectation is

<a. > = [1/o(2x)1/ 2] f exp(- ao - a1w - W/2o2) dw

where the subscript n has been omitted from the constants ao and a, for simplicity.

Completing the square

a1w + w2/2o 2 = (ajo9 + w)2/2o 2 - a o2/2

so that

<an > = [1/o(2X)1/ 2] exp(- ao + a o2/2) f exp[- (ajo2 + W)2 /2o2]dw

The integral is equal to a(2a)1/2 so that

<an> = exp(- a0 + a o2/2)

The result is easily extended to the case of two independent variables, wa and wb; that
is, for

an = exp(-ao - a1w, - blwb)
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The expectation is then of the form

<a,> f ,(Wa , Wb)P2(Wa , Wb)dWa dwb

where

P2(Wa , Wb) = (1/2a qorj) expl- (wd,'o + w•lblr)121

so that

<a. = exp(- ao + afo-12 + b,'cb/2)

The expectation of E is then proportional to

< E>- An exp [- ik S~x - (kxoh aS,/ah')2/2 - (kxoap aS./a#)2/2j

Note that the expectation of E is not the value of E for Ah' = A,8 = 0. This is because
of the asymmetrical nature of the exponential function.

The expectation of EE* is proportional to

< EE *> - A > A,4 exp{ - ik(S,, - S,)x - [kxoh(aSn/ah' - aSm/ah')]2/2
n m

- [kxo(aS./ - a - as,/al)12/2)

The derivatives of sine 0 with respect to h' and fP were computed by finding
eigenangles for finite increments in h' and P. The independence of h' and P is assumed.
The derivatives are then

aS,/ah' = cosO{[O(h' + Ah') - Oj(h' - Ah')I/2Ah'}

aSi/ap = cosO([04i. + A46) - 0i•( - A,6)1/2A#}

Only the 10 or 12 most significant modes were included. Care was taken to ensure that
the same set of modes was used for the increments and decrements in h' and fP as for the
no-increment set. Increments Ah' = 1km and A# = 0.1 were used for this purpose.

In principle, analytic derivatives of the eigenangles could be computed so that ordering
would not be a problem. Although computer code for this is already available, it is large
and would unduly complicate the MODESRCH program.

RESULTS

Calculations of the variability of electric field strength in the earth-ionosphere

waveguide were compared with data taken on board a ship in the Atlantic, the
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GTS Callaghan, from which GBR at Rugby, England; the Anthorn transmitter in England;
NSS at Annapolis; and NAA at Cutler, Maine, were monitored [Computer Sciences
Corporation, 19891. The data were taken at night on many traverses of the Atlantic, and
hence the superimposition of these data gives a good indication of the nighttime
variability in the E-field due to variation in the ionosphere.

In the calculations, each path was approximated to be entirely over seawater even
though in fact a small part of each path in the vicinity of the transmitter was over land.
Each path was approximated to be homogeneous in other respects as well. Actually the
azimuth of propagation and the dip and strength of the earth's magnetic field varied
somewhat along each path. For seawater, the r.-lative permitivity E, = 81, and the
conductivity o = 4.0. Twelve modes were used for comparisons with NSS data and ten
modes were used for each of the other cases.

Figures la, 2a, 3a, and 4a show a comparison between field strength data and field
strength calculations for GBR (16 kHz), Anthorn (19 kHz), NSS (21.4 kHz), and NAA
(24 khz), respectively (figures are at the end of the report). The fit is fairly close,
considering that homogeneity along the path is assumed.

Figures lb, 2b, 3b, and 4b show the data with the expectation of the field strength as a
function of distance. Curves of standard deviation are also shown. These are for oh = 1.0
and or# = 0.05. It is seen that the magnitudes of the standard deviations for the computed
curves are about the same as for the data.

The expectation of the field strength and the standard deviations are also shown in the

remaining figures for various combinations of oh and op. In figures 1c, 2c, 3c, and 4c,
orh = 1.0 and orp = 0.05, and the usual curve of field strength versus distance is shown as
a dashed line.

In figures 1d, 2d, 3d, and 4d, oh = 1.0 and up = 0.0, and in figures le, 2e, 3e, and
4e, o'h = 0.0 and go = 0.05. These last figures show the separate effects of variation in

h' and fP. The variation of fP affects the field mostly at long distances. This would
correspond to the fact that the slope of the electron density profile affects the attenuation
much more than does the height.

CONCLUSIONS

A method has been presented of finding the standard deviation of the field strength in

the earth-ionosphere waveguide. This method uses derivatives of the eigenangles with
respect to height and slope variations in the electron density profile. The calculated results
are in reasonable agreement with available data.

A method that uses the derivatives of the eigenangles is considered to be better than
one that uses the derivatives of E or InlEl directly since the variation of the eigenangles is
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more nearly linear. The curve of the expectation of IniEl is smoother than that of JnJEJ,
and the expectation of the standard deviation of InlEl shows, not surprisingly, a
considerable amount of asymmetry.

The method has some drawbacks. Sets of modes for the various profiles needed to
find the derivatives must be visually checked for each case, and the situation is
ambiguous when modes are close together. Variation of the excitation factors is not
accounted for. Furthermore, the amount of computation is proportional to the square of
the number of modes once the sets of modes are found. Nevertheless, the method is
expected to be useful in predicting the variation of signal strength in the earth-ionosphere
waveguide.
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Figure 1. Comparison of calculated values with GBR data.
Frequency = 16.0 kHz, azimuth = 265 degrees, dip -
66 degrees, and magnetic field strength = 0.47 gauss.
Parameters of the profile are h' = 83.8 km and
f= 0.5 km"f
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Figure 1. Continued.
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Figure 2. Comparison of calculated values with Anthorn
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= 0.5 km-1
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Figure 3. Comparison of calculated values with NSS
data. Frequency = 21.4 kHz, azimuth = 85 degrees, dip
= 72 degrees, and magnetic field strength = 0.53 gauss.
Parameters of the profile are h' = 85.3 km and
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Figure 3. Continued.
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Figure 4. Comparison of calculated values with NAA
data. Frequency = 24.0 kHz, azimuth = 120 degrees, dip
= 70 degrees, and magnetic field strength = 0.50 gauss.
Parameters of the profile are h' = 85.1 km and

= 0.43 km-1
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